Application of Moore products to temporal logics

Szabolcs IVÁN Joint work with Zoltán ÉSIK

Szeged, 2007. March 5.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- We fix a rank type R with $0 \in R$.
- Σ: ranked alphabet of rank type R.
- T_{Σ} : terms over Σ (finite, no variables, ranked, ordered)
- CT_{Σ} : contexts over Σ .
- Formulae over Σ are generated by the grammar

$$\begin{split} \varphi &\to p_{\sigma}, \text{ for all } \sigma \in \Sigma; \\ \varphi &\to \neg \varphi \mid \varphi \lor \varphi \mid EF^{+}\varphi \mid EF^{*}\varphi \\ \varphi &\to X_{i}\varphi, \text{ for all } i \in R. \end{split}$$

A subset of the CTL modalities is allowed - a fragment of CTL.

Recall the semantics of some CTL modalities:

•
$$t \models p_{\sigma}$$
 iff $root(t) = \sigma$;

the Boolean connectives are treated as usual;

•
$$t \models X_i \varphi$$
 iff $t' \models \varphi$ for the *i*th **immediate** subtree t' of t ;

•
$$t \models EF^+\varphi$$
 iff $t' \models \varphi$ for some **proper** subtree t' of t ;

•
$$t \models EF^*\varphi$$
 iff $t' \models \varphi$ for **any** subtree t' of t .

A formula φ defines the tree language $L_{\varphi} = \{t \in T_{\Sigma} : t \models \varphi\}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Suppose Σ is a ranked alphabet.

- A Σ-algebra A consists of a nonempty carrier set A and a function σ^A : Aⁿ → A for each n ∈ R, σ ∈ Σ_n.
- Given \mathbb{A} , each term $t \in T_{\Sigma}$ evaluates to an element $t^{\mathbb{A}} \in A$.
- \mathbb{A} is a Σ -tree automaton iff $A = \{t^{\mathbb{A}} : t \in T_{\Sigma}\}.$
- ▶ In any Σ -tree automaton \mathbb{A} a context $\zeta \in CT_{\Sigma}$ induces a function $\zeta^{\mathbb{A}} : A \to A$.
- A tree language L ⊆ T_Σ is recognizable by A if there is a set F of final states such that L = {t ∈ T_Σ : t^A ∈ F}.

(日) (日) (日) (日) (日) (日) (日) (日)

A tree language is called **regular** iff it is recognizable by a finite tree automaton (that has a finite carrier set).

Recall that Bool is the ranked alphabet with $Bool_n = \{\uparrow_n, \downarrow_n\}$ for each $n \in R$.

- ▶ The automaton \mathbb{D}_0 has the states $\{0, 1\}$. For each $n \in R$ we define $\uparrow_n^{\mathbb{D}_0}$ as the constant function with value 1, and $\downarrow_n^{\mathbb{D}_0}$ as the constant function with value 0.
- The automaton E_{EF*} also has the states {0,1}. For each n ∈ R we define ↑<sup>E_{EF*}_n as the constant function with value 1, and ↓<sup>E_{EF*}_n as the n-ary disjunction. Note that ↓<sup>E_{EF*}_n = 0, hence E_{EF*} is indeed a tree automaton.
 </sup></sup></sup>

Recall that Bool is the ranked alphabet with $Bool_n = \{\uparrow_n, \downarrow_n\}$ for each $n \in R$.

► The automaton 𝔅_{EF+} has the states {0, 1, 2}. For each n ∈ R we define

$$\uparrow_n^{\mathbb{E}_{EF^+}}(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } \forall i \ x_i = 0; \\ 2 & \text{otherwise} \end{cases}$$

and

$$\downarrow_n^{\mathbb{E}_{EF^+}}(x_1,\ldots,x_n) = \begin{cases} 0 & \text{if } \forall i \ x_i = 0; \\ 2 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Suppose $\mathbb{A} = (A, \Sigma)$ and $\mathbb{B} = (B, \Delta)$ are tree automata and $\alpha = \{\alpha_n : n \in R\}$ is a family of functions where each α_n maps $A^n \times \Sigma_n$ to Δ_n .

Then the **cascade product** $\mathbb{A} \times_{\alpha} \mathbb{B}$ is the least subalgebra of $\mathbb{C} = (A \times B, \Sigma)$, where each $\sigma \in \Sigma_n$ is interpreted as

$$\sigma^{\mathbb{C}}((a_1,b_1),\ldots,(a_n,b_n))=(a,\delta^{\mathbb{B}}(b_1,\ldots,b_n))$$

where $a = \sigma^{\mathbb{A}}(a_1, \ldots, a_n)$ and $\delta = \alpha_n(a_1, \ldots, a_n, \sigma)$.

Suppose $\mathbb{A} = (A, \Sigma)$ and $\mathbb{B} = (B, \Delta)$ are tree automata and $\beta : A \times \Sigma \to \Delta$ is a rank-preserving function. Then the **Moore product** $\mathbb{A} \times_{\beta} \mathbb{B}$ is the least subalgebra of $\mathbb{C} = (A \times B, \Sigma)$, where each $\sigma \in \Sigma_n$ is interpreted as

$$\sigma^{\mathbb{C}}((a_1, b_1), \ldots, (a_n, b_n)) = (a, \delta^{\mathbb{B}}(b_1, \ldots, b_n))$$

where $a = \sigma^{\mathbb{A}}(a_1, \ldots, a_n)$ and $\delta = \beta(a, \sigma)$.

A nonempty class **V** if finite tree automata is called a (pseudo)**variety** iff it is closed under

- renamings;
- quotients (that is, taking homomorphic images);
- (finite) direct products.

If **V** is even closed under taking Moore (cascade, resp.) products, then **V** is called a Moore (cascade, resp.) variety. If **V** is a class of finite tree automata, then $\langle \mathbf{V} \rangle_M$ denotes the least Moore variety **W** with $\mathbf{V} \subseteq \mathbf{W}$. The variety $\langle \mathbf{V} \rangle_c$ is defined similarly for the cascade product.

We will characterize the following varieties of tree automata:

- $\langle \mathbb{D}_0 \rangle_c$ (that corresponds to the logic CTL(X));
- $\langle \mathbb{E}_{EF^+} \rangle_M;$
- $\langle \mathbb{E}_{EF^+}, \mathbb{D}_0 \rangle_M$ (that corresponds to $CTL(EF^+)$);
- $\blacktriangleright \langle \mathbb{E}_{EF^*} \rangle_M;$
- $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_M$ (that corresponds to $CTL(EF^*)$);
- $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_c$ (that corresponds to $CTL(X + EF^+)$).

Note that $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_c = \langle \mathbb{E}_{EF^+}, \mathbb{D}_0 \rangle_c$ holds, and the logics $CTL(X + EF^+)$ and $CTL(X + EF^*)$ are equivalent.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- A tree automaton A is definite iff there exists an integer n such that s^A = t^A holds whenever s and t are trees that "agree up to depth n".
- Definiteness is preserved under renamings, taking homomorphic images and cascade products. We call such a property a cascade property.

- **D** denotes the class of all definite tree automata.
- It clearly holds that $\langle \mathbb{D}_0 \rangle_c \subseteq \mathbf{D}$.

Theorem (Ésik). $\langle \mathbb{D}_0 \rangle_c = \mathbf{D}$. *Proof sketch.* Call a congruence Θ of \mathbb{A} simple if

- it collapses exactly two states and
- whenever $n \in R$, $\sigma \in \Sigma_n$ and $a_1 \ominus b_1, \ldots, a_n \ominus b_n$, it even holds that $\sigma^{\mathbb{A}}(a_1, \ldots, a_n) = \sigma^{\mathbb{A}}(b_1, \ldots, b_n)$.

Now we get the Theorem from

- if Θ is a simple congruence of A, then A is a quotient of a cascade product A/Θ ×_α D₀;
- for any nontrivial definite tree automaton there exists a simple congruence.

A property \mathcal{P} of tree automata is called a **Moore property** iff the class of all finite tree automata that satisfy \mathcal{P} is a Moore variety. Three Moore properties exactly characterize the variety $\langle \mathbb{E}_{EF^+} \rangle_M$:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

- commutativity;
- monotonicity;
- maximal dependence.

A tree automaton \mathbb{A} is **commutative** if for any arity $n \in R$, function symbol $\sigma \in \Sigma_n$, states $a_1, \ldots, a_n \in A$ and permutation π of [n] it holds that

$$\sigma^{\mathbb{A}}(a_1,\ldots,a_n)=\sigma^{\mathbb{A}}(a_{\pi(1)},\ldots,a_{\pi(n)}).$$

Commutativity is a Moore property. Let **Com** denote the class of all commutative finite tree automata. It holds that $\mathbb{E}_{EF^+}, \mathbb{D}_0 \in \mathbf{Com}$.

Let $\leq_{\mathbb{A}}$ denote the accessibility relation of the tree automaton \mathbb{A} (i.e. $a \leq_{\mathbb{A}} b$ iff there exist a context $\zeta \in CT_{\Sigma}$ with $\zeta^{\mathbb{A}}(a) = b$). Clearly, $\leq_{\mathbb{A}}$ is a preorder for any \mathbb{A} . If the accessibility relation of \mathbb{A} is a partial order, we call \mathbb{A} **monotone**.

Monotonicity is a cascade property. Let **Mon** denote the class of all monotone tree automata.

We have that \mathbb{E}_{EF^+} is monotone (but, \mathbb{D}_0 is not).

We call a tree automaton \mathbb{A} maximal dependent iff for any arity $n \in R$, function symbol $\sigma \in \Sigma_n$ and states $a_1, \ldots, a_{n-1}, b_1, b_2 \in A$ such that there exist indices $i, j \leq n-1$ with $b_1 \preceq_{\mathbb{A}} a_i$ and $b_2 \preceq_{\mathbb{A}} a_j$, then also

$$\sigma^{\mathbb{A}}(a_1,\ldots,a_{n-1},b_1)=\sigma^{\mathbb{A}}(a_1,\ldots,a_{n-1},b_2).$$

Maximal dependency is a Moore property; the corresponding Moore variety is denoted by **MaxDep**. It is easy to check that $\mathbb{E}_{FF^+}, \mathbb{D}_0 \in \mathbf{MaxDep}$. **Theorem.** $\langle \mathbb{E}_{EF^+} \rangle_M = \mathbf{Com} \cap \mathbf{Mon} \cap \mathbf{MaxDep}$. *Proof sketch.* One direction is already proven. For the other direction we can show that any nontrivial tree automaton $\mathbb{A} \in \mathbf{Com} \cap \mathbf{Mon} \cap \mathbf{MaxDep}$ is...

- ...either subdirectly reducible;
- ... or there exists a proper congruence Θ of \mathbb{A} such that \mathbb{A} divides a Moore product $\mathbb{A}/\Theta \times_{\beta} \mathbb{F}$, for some $\mathbb{F} \in \langle \mathbb{E}_{EF^+} \rangle_M$.

This proves the Theorem.

Call a tree automaton \mathbb{A} stutter invariant iff for all arity $n \in R$, function symbol $\sigma \in \Sigma_n$ and states $a_1, \ldots, a_n \in A$ it holds that

$$\sigma^{\mathbb{A}}(a_1,\ldots,a_n)=\sigma^{\mathbb{A}}(a_1,\ldots,a_{n-1},\sigma^{\mathbb{A}}(a_1,\ldots,a_n)).$$

Stutter invariance is a Moore property. Let **Stu** denote the corresponding Moore variety.

 \mathbb{E}_{EF^*} and \mathbb{D}_0 are contained in **Stu**. However, \mathbb{E}_{EF^+} is not.

Theorem. $\langle \mathbb{E}_{EF^*} \rangle_M = \text{Com} \cap \text{Mon} \cap \text{MaxDep} \cap \text{Stu}.$ *Proof sketch.* The proof is similar to the case of strict *EF*, altough the construction is slightly more complicated.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

We will characterize the following varieties of tree automata:

- $\langle \mathbb{D}_0 \rangle_c$ (that corresponds to the logic CTL(X));
- $\blacktriangleright \langle \mathbb{E}_{EF^+} \rangle_M;$
- $\langle \mathbb{E}_{EF^+}, \mathbb{D}_0 \rangle_M$ (that corresponds to $CTL(EF^+)$);
- $\blacktriangleright \langle \mathbb{E}_{EF^*} \rangle_M;$
- $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_M$ (that corresponds to $CTL(EF^*)$);
- $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_c$ (that corresponds to $CTL(X + EF^+)$).

Let D_0 denote the (decidable) Moore variety $\langle \mathbb{D}_0 \rangle_M$. Lemma. For any variety V it holds that

$$\langle \mathbf{V} \cup \{\mathbb{D}_0\} \rangle_M = \langle \mathbf{V} \rangle_M \times \mathbf{D}_0.$$

Proof sketch.

- Any Moore product A ×_β D with D ∈ D₀ is a quotient of some direct product A × D', with D' ∈ D₀.
- Any Moore product D ×_β A with D ∈ D₀ is isomorphic to some direct product A' × D, where A' is a renaming of A.

This proves the Lemma.

From the two characterization theorems and the previous lemma we get the following:

$$\langle \mathbb{E}_{EF^+}, \mathbb{D}_0 \rangle_M = \operatorname{\mathsf{Com}} \cap (\operatorname{\mathsf{Mon}} \times \operatorname{\mathsf{D}}_0) \cap \operatorname{\mathsf{MaxDep}};$$

 $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_M = \operatorname{\mathsf{Com}} \cap (\operatorname{\mathsf{Mon}} \times \operatorname{\mathsf{D}}_0) \cap \operatorname{\mathsf{MaxDep}} \cap \operatorname{\mathsf{Stu}}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Altough this is already a structural characterization, it is not readily decidable.

Let $\approx_{\mathbb{A}}$ denote the equivalence relation

$$a \approx_{\mathbb{A}} b \Leftrightarrow a \preceq_{\mathbb{A}} b \land b \preceq_{\mathbb{A}} a.$$

An automaton \mathbb{A} is **component dependent** if for each arity $n \in R$, $\sigma \in \Sigma_n$ and $a_1 \approx_{\mathbb{A}} b_1, \ldots, a_n \approx_{\mathbb{A}} b_n$ it holds that

$$\sigma^{\mathbb{A}}(a_1,\ldots,a_n)=\sigma^{\mathbb{A}}(b_1,\ldots,b_n).$$

Component dependency is a Moore property; **CompDep** denotes the corresponding variety of finite tree automata. Note that $\mathbb{D}_0 \in$ **CompDep**, and of course **Mon** \subseteq **CompDep** holds.

Suppose for a Σ -tree automaton \mathbb{A} that whenever $a, b \in A$ are states and $\zeta, \xi \in CT_{\Sigma}$ are contexts such that

• $\zeta^{\mathbb{A}}(a) = b$

•
$$\xi^{\mathbb{A}}(b) = a$$

• and
$$\operatorname{Root}(\zeta) = \operatorname{Root}(\xi)$$

then a = b has to hold.

Then we call $\mathbb A$ a **componentwise unique** automaton.

Componentwise uniqueness is a Moore property. **CWU** denotes the corresponding Moore variety.

It is easy to check that $\mathbb{D}_0 \in \mathbf{CWU}$ and $\mathbf{Mon} \subseteq \mathbf{CWU}$.

Theorem. Mon \times D₀ = CompDep \cap CWU.

Proof sketch. One direction is clear.

The other direction comes from the following facts:

- ▶ If \mathbb{A} is component dependent, then $\approx_{\mathbb{A}}$ is a congruence.
- ▶ If $\approx_{\mathbb{A}}$ is a congruence, then $\mathbb{A}/\approx_{\mathbb{A}}$ is monotone.
- If A is componentwise unique and component dependent, then A is a quotient of a direct product A/ ≈_A ×D, with D ∈ D₀.
 Now this gives us a decidability result.

Theorem.

$$\langle \mathbb{E}_{EF^+}, \mathbb{D}_0 \rangle_M = \mathsf{Com} \cap \mathsf{CompDep} \cap \mathsf{CWU} \cap \mathsf{MaxDep};$$

 $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_M = \langle \mathbb{E}_{EF^+}, \mathbb{D}_0 \rangle_M \cap \mathsf{Stu}.$

Since all five Moore properties involved in the characterization above is decidable (even in polynomial time), membership for these varieties (hence, definability in the logics $CTL(EF^+)$ and $CTL(EF^*)$) is decidable.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Suppose A is a tree automaton and k > 0 is an integer such that whenever $n \ge 0$ and

- t ∈ T_Σ(X_n) having all variable-labeled leaves x_i in depth at least k;
- ▶ $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ are states with $a_i, b_i \approx_A a_1$ for all $i \in [n]$;

• $t^{\mathbb{A}}(a_1,\ldots,a_n) \approx_{\mathbb{A}} t^{\mathbb{A}}(b_1,\ldots,b_n) \approx_{\mathbb{A}} a_1;$

then even $t^{\mathbb{A}}(a_1, \ldots, a_n) = t^{\mathbb{A}}(b_1, \ldots, b_n)$ holds. Then \mathbb{A} is called an *XF*-automaton. The class of all finite XF-automata, denoted **XF**, is a cascade variety and contains both \mathbb{D}_0 and \mathbb{E}_{EF^*} . Moreover, it can be shown that **Theorem (Ésik).** $\langle \mathbb{E}_{EF^*}, \mathbb{D}_0 \rangle_c = \mathbf{XF}$. This again gives us a decidable characterization.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

We gave examples how the concepts of Moore and cascade varieties can be used to show decidability of a given fragment of the logic *CTL*. Namely, the following fragments are known to be decidable so far:

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

- ► CTL(X);
- CTL(EF*);
- ► *CTL*(*EF*⁺);
- CTL(X + EF).

References

- Z. Ésik. Definite tree automata and their cascade compositions. Publ. Math. 48 (1996), 243 – 262.
- Z. Ésik. An algebraic characterization of temporal logics on finite trees. Parts I,II,III. In 1st International Conference on Algebraic Informatics (2005), 53–77, 79–99, 101–110, Aristotle Univ. Thessaloniki, Thessaloniki, 2005.
- Z. Ésik. Characterizing CTL-like logics on finite trees. Theoretical Computer Science 356 (2006), 136 – 152.
- Z. Ésik, Sz. Iván. Products of tree automata with an application to temporal logics. To appear.
- Z. Ésik, Sz. Iván. Some varieties of finite tree automata related to restricted temporal logics. To appear.
- F. Gécseg, M. Steinby. *Tree automata*. Akadémiai Kiadó, 1984.