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Computation Tree Logics

I We fix a rank type R with 0 ∈ R .

I Σ: ranked alphabet of rank type R .

I TΣ: terms over Σ (finite, no variables, ranked, ordered)

I CTΣ: contexts over Σ.

I Formulae over Σ are generated by the grammar

ϕ → pσ, for all σ ∈ Σ;

ϕ → ¬ϕ | ϕ ∨ ϕ | EF+ϕ | EF ∗ϕ

ϕ → Xiϕ, for all i ∈ R .

A subset of the CTL modalities is allowed – a fragment of CTL.



Semantics reminder

Recall the semantics of some CTL modalities:

I t |= pσ iff root(t) = σ;

I the Boolean connectives are treated as usual;

I t |= Xiϕ iff t ′ |= ϕ for the ith immediate subtree t ′ of t;

I t |= EF+ϕ iff t ′ |= ϕ for some proper subtree t ′ of t;

I t |= EF ∗ϕ iff t ′ |= ϕ for any subtree t ′ of t.

A formula ϕ defines the tree language Lϕ = {t ∈ TΣ : t |= ϕ}.



Tree automata

Suppose Σ is a ranked alphabet.

I A Σ-algebra A consists of a nonempty carrier set A and a
function σA : An → A for each n ∈ R , σ ∈ Σn.

I Given A, each term t ∈ TΣ evaluates to an element tA ∈ A.

I A is a Σ-tree automaton iff A = {tA : t ∈ TΣ}.

I In any Σ-tree automaton A a context ζ ∈ CTΣ induces a
function ζA : A → A.

I A tree language L ⊆ TΣ is recognizable by A if there is a set
F of final states such that L = {t ∈ TΣ : tA ∈ F}.

I A tree language is called regular iff it is recognizable by a
finite tree automaton (that has a finite carrier set).



Automata over Bool

Recall that Bool is the ranked alphabet with Booln = {↑n, ↓n} for
each n ∈ R .

I The automaton D0 has the states {0, 1}. For each n ∈ R we
define ↑D0

n as the constant function with value 1, and ↓D0
n as

the constant function with value 0.

I The automaton EEF∗ also has the states {0, 1}. For each

n ∈ R we define ↑
EEF∗

n as the constant function with value 1,
and ↓

EEF∗

n as the n-ary disjunction.
Note that ↓EEF∗

0 = 0, hence EEF∗ is indeed a tree automaton.



Automata over Bool

Recall that Bool is the ranked alphabet with Booln = {↑n, ↓n} for
each n ∈ R .

I The automaton EEF+ has the states {0, 1, 2}. For each n ∈ R
we define

↑
EEF+
n (x1, . . . , xn) =

{

1 if ∀i xi = 0;
2 otherwise

and

↓
EEF+
n (x1, . . . , xn) =

{

0 if ∀i xi = 0;
2 otherwise.



The cascade product

Suppose A = (A,Σ) and B = (B ,∆) are tree automata and
α = {αn : n ∈ R} is a family of functions where each αn maps
An × Σn to ∆n.
Then the cascade product A ×α B is the least subalgebra of
C = (A × B ,Σ), where each σ ∈ Σn is interpreted as

σC
(

(a1, b1), . . . , (an, bn)
)

= (a, δB(b1, . . . , bn))

where a = σA(a1, . . . , an) and δ = αn(a1, . . . , an, σ).



The Moore product

Suppose A = (A,Σ) and B = (B ,∆) are tree automata and
β : A × Σ → ∆ is a rank-preserving function.
Then the Moore product A ×β B is the least subalgebra of
C = (A × B ,Σ), where each σ ∈ Σn is interpreted as

σC
(

(a1, b1), . . . , (an, bn)
)

= (a, δB(b1, . . . , bn))

where a = σA(a1, . . . , an) and δ = β(a, σ).



Varieties of finite tree automata

A nonempty class V if finite tree automata is called a
(pseudo)variety iff it is closed under

I renamings;

I quotients (that is, taking homomorphic images);

I (finite) direct products.

If V is even closed under taking Moore (cascade, resp.) products,
then V is called a Moore (cascade, resp.) variety.
If V is a class of finite tree automata, then 〈V〉M denotes the least
Moore variety W with V ⊆ W. The variety 〈V〉c is defined
similarly for the cascade product.



This talk

We will characterize the following varieties of tree automata:

I 〈D0〉c (that corresponds to the logic CTL(X ));

I 〈EEF+〉M ;

I 〈EEF+ , D0〉M (that corresponds to CTL(EF +));

I 〈EEF∗〉M ;

I 〈EEF∗ , D0〉M (that corresponds to CTL(EF ∗));

I 〈EEF∗ , D0〉c (that corresponds to CTL(X + EF +)).

Note that 〈EEF∗ , D0〉c = 〈EEF+ , D0〉c holds, and the logics
CTL(X + EF+) and CTL(X + EF ∗) are equivalent.



Definiteness and 〈D0〉c

I A tree automaton A is definite iff there exists an integer n
such that sA = tA holds whenever s and t are trees that
“agree up to depth n”.

I Definiteness is preserved under renamings, taking
homomorphic images and cascade products. We call such a
property a cascade property.

I D denotes the class of all definite tree automata.

I It clearly holds that 〈D0〉c ⊆ D.



Characterization of CTL(X )

Theorem (Ésik). 〈D0〉c = D.
Proof sketch. Call a congruence Θ of A simple if

I it collapses exactly two states and

I whenever n ∈ R , σ ∈ Σn and a1Θb1, . . . , anΘbn, it even holds
that σA(a1, . . . , an) = σA(b1, . . . , bn).

Now we get the Theorem from

I if Θ is a simple congruence of A, then A is a quotient of a
cascade product A/Θ ×α D0;

I for any nontrivial definite tree automaton there exists a simple
congruence.



Moore properties

A property P of tree automata is called a Moore property iff the
class of all finite tree automata that satisfy P is a Moore variety.
Three Moore properties exactly characterize the variety 〈EEF+〉M :

I commutativity;

I monotonicity;

I maximal dependence.



Commutativity

A tree automaton A is commutative if for any arity n ∈ R ,
function symbol σ ∈ Σn, states a1, . . . , an ∈ A and permutation π
of [n] it holds that

σA(a1, . . . , an) = σA(aπ(1), . . . , aπ(n)).

Commutativity is a Moore property.
Let Com denote the class of all commutative finite tree automata.
It holds that EEF+ , D0 ∈ Com.



Monotonicity

Let �A denote the accessibility relation of the tree automaton A

(i.e. a �A b iff there exist a context ζ ∈ CTΣ with ζA(a) = b).
Clearly, �A is a preorder for any A.
If the accessibility relation of A is a partial order, we call A

monotone.
Monotonicity is a cascade property. Let Mon denote the class of
all monotone tree automata.
We have that EEF+ is monotone (but, D0 is not).



Maximal dependency

We call a tree automaton A maximal dependent iff for any arity
n ∈ R , function symbol σ ∈ Σn and states a1, . . . , an−1, b1, b2 ∈ A
such that there exist indices i , j ≤ n − 1 with b1 �A ai and
b2 �A aj , then also

σA(a1, . . . , an−1, b1) = σA(a1, . . . , an−1, b2).

Maximal dependency is a Moore property; the corresponding
Moore variety is denoted by MaxDep.
It is easy to check that EEF+ , D0 ∈ MaxDep.



Characterizing 〈EEF+〉M

Theorem. 〈EEF+〉M = Com ∩ Mon ∩ MaxDep.
Proof sketch. One direction is already proven.
For the other direction we can show that any nontrivial tree
automaton A ∈ Com ∩ Mon ∩ MaxDep is. . .

I . . . either subdirectly reducible;

I . . . or there exists a proper congruence Θ of A such that A

divides a Moore product A/Θ ×β F, for some F ∈ 〈EEF+〉M .

This proves the Theorem.



The difference between EEF ∗ and EEF+

Call a tree automaton A stutter invariant iff for all arity n ∈ R ,
function symbol σ ∈ Σn and states a1, . . . , an ∈ A it holds that

σA(a1, . . . , an) = σA(a1, . . . , an−1, σ
A(a1, . . . , an)).

Stutter invariance is a Moore property. Let Stu denote the
corresponding Moore variety.
EEF∗ and D0 are contained in Stu. However, EEF+ is not.



Characterizing 〈EEF ∗〉M

Theorem. 〈EEF∗〉M = Com ∩ Mon ∩ MaxDep ∩ Stu.
Proof sketch. The proof is similar to the case of strict EF , altough
the construction is slightly more complicated.



This talk – reminder

We will characterize the following varieties of tree automata:

I 〈D0〉c (that corresponds to the logic CTL(X ));

I 〈EEF+〉M ;

I 〈EEF+ , D0〉M (that corresponds to CTL(EF +));

I 〈EEF∗〉M ;

I 〈EEF∗ , D0〉M (that corresponds to CTL(EF ∗));

I 〈EEF∗ , D0〉c (that corresponds to CTL(X + EF +)).



Handling D0

Let D0 denote the (decidable) Moore variety 〈D0〉M .
Lemma. For any variety V it holds that

〈V ∪ {D0}〉M = 〈V〉M × D0.

Proof sketch.

I Any Moore product A ×β D with D ∈ D0 is a quotient of
some direct product A × D

′, with D
′ ∈ D0.

I Any Moore product D ×β A with D ∈ D0 is isomorphic to
some direct product A

′ × D, where A
′ is a renaming of A.

This proves the Lemma.



Aiming Mon × D0

From the two characterization theorems and the previous lemma
we get the following:

〈EEF+ , D0〉M = Com ∩ (Mon × D0) ∩ MaxDep;

〈EEF∗ , D0〉M = Com ∩ (Mon × D0) ∩ MaxDep ∩ Stu.

Altough this is already a structural characterization, it is not
readily decidable.



Component dependency

Let ≈A denote the equivalence relation

a ≈A b ⇔ a �A b ∧ b �A a.

An automaton A is component dependent if for each arity
n ∈ R , σ ∈ Σn and a1 ≈A b1, . . . , an ≈A bn it holds that

σA(a1, . . . , an) = σA(b1, . . . , bn).

Component dependency is a Moore property; CompDep denotes
the corresponding variety of finite tree automata.
Note that D0 ∈ CompDep, and of course Mon ⊆ CompDep
holds.



Componentwise uniqueness

Suppose for a Σ-tree automaton A that whenever a, b ∈ A are
states and ζ, ξ ∈ CTΣ are contexts such that

I ζA(a) = b

I ξA(b) = a

I and Root(ζ) = Root(ξ)

then a = b has to hold.
Then we call A a componentwise unique automaton.
Componentwise uniqueness is a Moore property. CWU denotes the
corresponding Moore variety.
It is easy to check that D0 ∈ CWU and Mon ⊆ CWU.



Deciding Mon × D0

Theorem. Mon × D0 = CompDep ∩ CWU.
Proof sketch. One direction is clear.
The other direction comes from the following facts:

I If A is component dependent, then ≈A is a congruence.

I If ≈A is a congruence, then A/ ≈A is monotone.

I If A is componentwise unique and component dependent, then
A is a quotient of a direct product A/ ≈A ×D, with D ∈ D0.

Now this gives us a decidability result.



Decidable CTL fragments

Theorem.

〈EEF+ , D0〉M = Com ∩ CompDep ∩ CWU ∩ MaxDep;

〈EEF∗ , D0〉M = 〈EEF+ , D0〉M ∩ Stu.

Since all five Moore properties involved in the characterization
above is decidable (even in polynomial time), membership for these
varieties (hence, definability in the logics CTL(EF +) and
CTL(EF ∗)) is decidable.



The fragment CTL(X + EF )

Suppose A is a tree automaton and k > 0 is an integer such that
whenever n ≥ 0 and

I t ∈ TΣ(Xn) having all variable-labeled leaves xi in depth at
least k ;

I a1, . . . , an, b1, . . . , bn ∈ A are states with ai , bi ≈A a1 for all
i ∈ [n];

I tA(a1, . . . , an) ≈A tA(b1, . . . , bn) ≈A a1;

then even tA(a1, . . . , an) = tA(b1, . . . , bn) holds.
Then A is called an XF -automaton.



The fragment CTL(X + EF )

The class of all finite XF -automata, denoted XF, is a cascade
variety and contains both D0 and EEF∗ .
Moreover, it can be shown that
Theorem (Ésik). 〈EEF∗ , D0〉c = XF.
This again gives us a decidable characterization.



Summary

We gave examples how the concepts of Moore and cascade
varieties can be used to show decidability of a given fragment of
the logic CTL. Namely, the following fragments are known to be
decidable so far:

I CTL(X );

I CTL(EF ∗);

I CTL(EF+);

I CTL(X + EF ).
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