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Computation Tree Logics

We fix a rank type R with 0 € R.
Y : ranked alphabet of rank type R.

>
>
» Tx: terms over X (finite, no variables, ranked, ordered)
» (CTs: contexts over ¥.

>

Formulae over ¥ are generated by the grammar

Y — pg, forallo e ¥;
p——p|oVe|EFte| EF*p
w — Xip, forall i € R.

A subset of the CTL modalities is allowed — a fragment of CTL.



Semantics reminder

Recall the semantics of some CTL modalities:
> t = p, iff root(t) = o;
» the Boolean connectives are treated as usual;
> t = X iff t' = ¢ for the ith immediate subtree t’ of t;
» t = EFTp iff t' = ¢ for some proper subtree t’ of t;
» t = EF*p iff t' |= ¢ for any subtree t’ of t.
A formula ¢ defines the tree language L, = {t € Tx : t |= ¢}.



Tree automata

Suppose X is a ranked alphabet.

» A > -algebra A consists of a nonempty carrier set A and a
function o® : A" — Aforeachne R, c € ¥,

v

Given A, each term t € Ty evaluates to an element t* € A.
A is a Y-tree automaton iff A= {t* : t € Tg}.

In any ¥-tree automaton A a context ( € CTy induces a
function ¢4 : A — A.

A tree language L C Ty is recognizable by A if there is a set
F of final states such that L = {t € Ty : t* € F}.

A tree language is called regular iff it is recognizable by a
finite tree automaton (that has a finite carrier set).

v

v

v
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Automata over Bool

Recall that Bool is the ranked alphabet with Bool, = {1,, | »} for
each n € R.

» The automaton Dy has the states {0,1}. For each n € R we

define 120 as the constant function with value 1, and |20 as
the constant function with value 0.

» The automaton Egg+ also has the states {0,1}. For each

n € R we define T]EEF* as the constant function with value 1,
and lIEEF* as the n-ary disjunction.
Note that llg‘”*: 0, hence Egg- is indeed a tree automaton.



Automata over Bool

Recall that Bool is the ranked alphabet with Bool, = {15, |»} for

each n € R.
» The automaton Egg+ has the states {0, 1, 2}- For each n € R
we define
EEF+ — 1 if Vi Xi = 0;
Th (x1,-0 s x0) = { 2 otherwise
and
IEEF+ — 0 if Vi Xi = 0;
In (X155 xn) = { 2 otherwise.



The cascade product

Suppose A = (A, X) and B = (B, A) are tree automata and

a = {ap: n € R} is a family of functions where each «, maps
A" X X, to Ap.

Then the cascade product A X, B is the least subalgebra of
C = (A x B,X), where each 0 € ¥, is interpreted as

o®((a1, b1);- - -, (an, bn)) = (a,8%(bn,. .., bn))

where a = 0*(ay,...,a,) and 6 = a,(a1,...,an,0).



The Moore product

Suppose A = (A, X) and B = (B, A) are tree automata and
B :Ax X — Ais a rank-preserving function.

Then the Moore product A xg B is the least subalgebra of
C = (A x B,X), where each o € ¥, is interpreted as

o®((a1, b1);- - -, (an, bn)) = (a,8%(bn,. - ., bn))

where a = 0®(ay,...,a,) and 0 = 3(a, o).



Varieties of finite tree automata

A nonempty class V if finite tree automata is called a
(pseudo)variety iff it is closed under

> renamings;

» quotients (that is, taking homomorphic images);

» (finite) direct products.
If V is even closed under taking Moore (cascade, resp.) products,
then V is called a Moore (cascade, resp.) variety.
If V is a class of finite tree automata, then (V) denotes the least
Moore variety W with V. C W. The variety (V) is defined
similarly for the cascade product.



This talk

We will characterize the following varieties of tree automata:
» (Do) (that corresponds to the logic CTL(X));

Eer+)m;
Egr+,Do)pm (that corresponds to CTL(EFT));

Egr+,Do)m (that corresponds to CTL(EF™));
Egr+, Do) (that corresponds to CTL(X + EFT)).

Note that (Egg+,Dg)c = (Egr+, Do) holds, and the logics
CTL(X + EFT) and CTL(X + EF*) are equivalent.



Definiteness and (Do)

> A tree automaton A is definite iff there exists an integer n
such that s* = t* holds whenever s and t are trees that
“agree up to depth n".

» Definiteness is preserved under renamings, taking
homomorphic images and cascade products. We call such a
property a cascade property.

» D denotes the class of all definite tree automata.

» It clearly holds that (IDg). C D.



Characterization of CTL(X)

Theorem (Esik). (D). = D.
Proof sketch. Call a congruence © of A simple if
» it collapses exactly two states and
» whenever n€ R, o0 € ¥, and a10by,...,a,0b,, it even holds
that o®(a1,...,an) = 0®(b1,..., by).
Now we get the Theorem from
» if © is a simple congruence of A, then A is a quotient of a
cascade product A/© x, Do;
» for any nontrivial definite tree automaton there exists a simple

congruence.



Moore properties

A property P of tree automata is called a Moore property iff the
class of all finite tree automata that satisfy P is a Moore variety.
Three Moore properties exactly characterize the variety (Egr+)p:

» commutativity;
> monotonicity;

» maximal dependence.



Commutativity

A tree automaton A is commutative if for any arity n € R,
function symbol ¢ € ¥, states ay, ..., a, € A and permutation 7
of [n] it holds that

OA(ala-'-van):UA( ar(1), n))

Commutativity is a Moore property.
Let Com denote the class of all commutative finite tree automata.
It holds that Egg+,Dy € Com.



Monotonicity

Let <4 denote the accessibility relation of the tree automaton A
(i.e. a <, b iff there exist a context ¢ € CTy with ¢*(a) = b).
Clearly, <4 is a preorder for any A.

If the accessibility relation of A is a partial order, we call A
monotone.

Monotonicity is a cascade property. Let Mon denote the class of
all monotone tree automata.

We have that Egg+ is monotone (but, Dy is not).



Maximal dependency

We call a tree automaton A maximal dependent iff for any arity
n € R, function symbol ¢ € ¥, and states a1,...,a,-1,b1, b0 € A
such that there exist indices i,j < n— 1 with by < a; and

b, =4 aj, then also

O’A(al, c..ydp—1, bl) = O'A(al, ce.ydn—1, bz).

Maximal dependency is a Moore property; the corresponding
Moore variety is denoted by MaxDep.
It is easy to check that Egr+,Dg € MaxDep.



Characterizing (Egr+)um

Theorem. (Egr+)p = Com N Mon N MaxDep.

Proof sketch. One direction is already proven.

For the other direction we can show that any nontrivial tree
automaton A € Com N Mon N MaxDep is. ..

» ...either subdirectly reducible;

> ...or there exists a proper congruence © of A such that A
divides a Moore product A/© x g, for some F € (Egr+)pm.

This proves the Theorem.



The difference between Egr+ and Egp+

Call a tree automaton A stutter invariant iff for all arity n € R,
function symbol ¢ € ¥, and states a;g,...,a, € A it holds that

UA(al, ce.yan) = UA(al, e, an—1, UA(al, vvyan))-

Stutter invariance is a Moore property. Let Stu denote the
corresponding Moore variety.
Egr+« and Dy are contained in Stu. However, Egr+ is not.



Characterizing (Egr+ )y

Theorem. (Egr+)p = Com N Mon N MaxDep N Stu.
Proof sketch. The proof is similar to the case of strict EF, altough
the construction is slightly more complicated.



This talk — reminder

We will characterize the following varieties of tree automata:
» (Do) (that corresponds to the logic CTL(X));
Eer+)m;
Egr+,Do)m (that corresponds to CTL(EFT));

Eger+,Do)m (that corresponds to CTL(EF™));
Egr+, Do) (that corresponds to CTL(X + EFT)).



Handling Dg

Let Dy denote the (decidable) Moore variety (Do) .
Lemma. For any variety V it holds that

<V U {D0}>M = (V)M x Dg.

Proof sketch.

» Any Moore product A xg D with D € Dg is a quotient of
some direct product A x D/, with D’ € Dy.

» Any Moore product D x5 A with D € Dy is isomorphic to
some direct product A’ x D, where A’ is a renaming of A.

This proves the Lemma.



Aiming Mon x Dy

From the two characterization theorems and the previous lemma
we get the following:

(Egr+,Do)p = Com N (Mon x Dg) N MaxDep;
(Ege+, Do) = Com N (Mon x Dg) N MaxDep N Stu.

Altough this is already a structural characterization, it is not
readily decidable.



Component dependency

Let =4 denote the equivalence relation
ar~pabs a=<ybAb=, a

An automaton A is component dependent if for each arity
ne R, o€, and a; =4 by,...,a, =a b, it holds that

o*(a1,...,an) = o®(by,..., by).

Component dependency is a Moore property; CompDep denotes
the corresponding variety of finite tree automata.

Note that Dy € CompDep, and of course Mon C CompDep
holds.



Componentwise uniqueness

Suppose for a X-tree automaton A that whenever a, b € A are
states and (,£ € CTy are contexts such that

» (Ma)=b

> ¢A(b) = a

» and Root(¢) = Root(§)
then a = b has to hold.
Then we call A a componentwise unique automaton.
Componentwise uniqueness is a Moore property. CWU denotes the

corresponding Moore variety.
It is easy to check that Dy € CWU and Mon C CWU.



Deciding Mon x Dy

Theorem. Mon x Dy = CompDep N CWU.
Proof sketch. One direction is clear.
The other direction comes from the following facts:

» If A is component dependent, then /=, is a congruence.
> If ~24 is a congruence, then A/ ~, is monotone.

» If A is componentwise unique and component dependent, then
A is a quotient of a direct product A/ ~, xD, with D € Dy.

Now this gives us a decidability result.



Decidable CTL fragments

Theorem.

(Egr+,Do)pr = Com N CompDep N CWU N MaxDep;
(EEF*7DO>M = <EEF+7]D)O>M N Stu.

Since all five Moore properties involved in the characterization
above is decidable (even in polynomial time), membership for these
varieties (hence, definability in the logics CTL(EF™) and
CTL(EF*)) is decidable.



The fragment CTL(X + EF)

Suppose A is a tree automaton and k > 0 is an integer such that
whenever n > 0 and

» t € Tx(X,) having all variable-labeled leaves x; in depth at

least k;
> 31,...,an, b1,...,b, € A are states with a;, b; =~ aj for all
i € [n];
> th(a1,...,an) ~a tA(by,. .., by) =4 ar;
then even t*(ay,...,a,) = t*(by,..., b,) holds.

Then A is called an XF-automaton.



The fragment CTL(X + EF)

The class of all finite XF-automata, denoted XF, is a cascade
variety and contains both Dy and Egg+.

Moreover, it can be shown that

Theorem (Esik). (Egg+,Dg)c = XF.

This again gives us a decidable characterization.



We gave examples how the concepts of Moore and cascade
varieties can be used to show decidability of a given fragment of
the logic CTL. Namely, the following fragments are known to be
decidable so far:
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